
Abstract

Performing rigorous analysis of Parallel and Distributed
Systems (PDS) specifications is one of the important tasks
during the early stages of development. The ambiguities
and errors left unchecked during the analysis phase can
creep into design and development phases, resulting in cost
and schedule overruns and a less reliable end product.
COTS (commercial-off-the-shelf) CASE (Computer Aided
Software Engineering) tools can play an important role in
the analysis and design phases. However, techniques must
be developed to address the shortcomings of CASE tools.
A set of such techniques is presented in this paper.

CASE tools can be used to gather PDS specifications in the
form of analysis models. The techniques presented in this
paper deal with the problem of performing rigorous
analysis of PDS specifications originally developed using a
CASE tool. The approach is based on integrating a CASE
tool with a verification tool based on Coloured Petri Nets
(CPNs). CPNs can be used to model and analyze
concurrency in specifications and design phases. Dynamic
simulations of CPN models can be used to conduct
performance/performability analysis as well as risk
assessment studies.

1  Introduction

The objective of this work is to develop methods and
techniques for generating verification and analysis models
from notations used for PDS specifications. These models
can be used by the analysts to detect potential problems
and prevent these problems from becoming part of the
design.

This paper presents a methodology to integrate a CASE
environment based on SART (Structured Analysis with
Real Time) notation and CPN based verification
environment. Semantics mapping rules are used to map
SART objects to corresponding CPN objects. The
mapping rules presented greatly simplify (in contrast with
previously published work [17], [22]) the development of
large CPN models. Therefore making these techniques
applicable to software models of large distributed systems.
Using the CDIF (Case Data Interchange Format) standard,
SART models are exported to a Semantics Transfer
Utility. This utility maps the SART model semantics to
CPN notation. The methodology has been implemented
using a COTS CASE tool and Design/CPN environment.
A model of a large industrial scale system based on
requirement specifications of NASA (National Air and
Space Administration, USA) EOS (Earth Observing
System) was developed to illustrate the scalability of this
methodology. Due to the lack of space, the details of the
EOS model and results of the dynamic analysis will be
presented in a separate paper.

Background

Requirements supplications languages (or conceptual
grammars for requirements specifications) are classified
by Fraser and Kumar [12] into two major groups: formal
specifications and informal specifications. Informal
specifications models supported by CASE tools used in
industry are based on SART models or Object-Oriented
Analysis models. Formal specifications are based on
formal languages such as VDM, Z and Petri Nets.

Informal specification languages use a combination of
graphics and semiformal textual grammars to describe and
specify software system requirements [3], [4], [12]. These
languages are ideal for a developer’s environment, as they
make it convenient for both user and developer to
communicate with each other and refine the user-
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description to a set of informal requirements documents.
These languages tend to be imprecise and ambiguous.
Hence there is a need to use formal specification
languages for the requirements analysts domain [20]. A
formal notation can be analyzed and manipulated using
mathematical operators. Mathematical proof procedures
can be used to test and verify the internal consistency and
syntactic correctness of the specifications [12]. Formal
languages provide exactness and the ability to reason [4].
If the problem can be specified mathematically, then a
program can be developed and proven to satisfy the
specification.

The CPN modeling environment can be used for software
requirements and design specifications. It is especially
useful in rigorous analysis of the dynamic behavioral
properties such as concurrency analysis, performance
analysis, safety, reliability analysis and reachability
analysis. Reachability analysis [9] is based on Hierarchical
Reachability Graph (HRG). This work shows the
applicability of CPN based analysis to large scale models.

Implementation

For many years developers have been using informal
techniques such as SART for requirements modeling and
specifications. Maier [1] has listed various advantages of
using SART methodology. Integrated development
environments, e.g. Integrated CASE (ICASE) tools, have
evolved to support a number of notations for requirements
modeling using SART as well as object-oriented analysis.
Such informal specifications are scalable and are being
used in large industrial projects. A large gap exists
between complex notations used for formal specifications
such as CPN and the informal notations used in ICASE
tools.

This paper addresses the problem of integrating
verification and analysis tools based on CPN with ICASE
specification tools as shown in Figure 1. Semantics
mapping rules are used in the integration process. The
process maps hierarchical requirements models developed
in SART notation to hierarchical models in CPN notation.
The above approach is implemented using the following
tools:

•   Teamwork for SART models,
•   Design/CPN for CPN models.1

1. Teamwork is a COTS CASE tool by Cayanne Software.
More information is available at www.cayennesoft.
com/ products. At present Design/CPN it is available
from University of Aarhus (http://www.daimi.aau.dk/
designCPN/).

Organization of this paper

The paper is organized as follows. Previous work in
related areas is described in Section 2. The layers of tool
integration are discussed in Section 4. Data transfer model
is described in  Section 5. A brief description of semantics
mapping rules are presented in the Section 6.  Section 7
describes verification and analysis tasks based on dynamic
analysis.

2  Previous Work

The literature [2], [12], [24], [1], [21], [5], [14], [17], [22]
contains a large body of work on software system
modeling and analysis based on mapping informal
specifications to formal languages and models. Examples
from four different approaches are presented in this
section. The last paragraph of this section explains some
aspects of CPN and their use in PDS specifications. The
four approaches described are summarized as follows:

•   SCCS-VP (Value Passing Synchronous Calculus of
Communications Systems)

•   VDM (Vienna Development Method)
•   Approaches used by Mair, Kung, Wieringa and

Miriyala
•   HLTPN (High Level Timed Petri Nets)

SCCS-VP

This formal notation has been utilized by Hooker and
Lockyer [2]. Their method integrates Ward-Mellor SART
notation and the SCCS-VP notation. The process of
integration involves three major steps. In the first step
SART models are used as an input to the SF (Semantic
Function) implementation. The output of SF is an SCCP-
VP program. In the second step, the SCCS-VP program is
translated to a basic SCCS program. In the third step a
CWB (Concurrency Workbench) is used for the model
checking and simulation of SCCS programs. The Hooker
et. al have mentioned limitations in this approach. First
there are a lot of manual sub-steps involved. Secondly the
tools used are not COTS. The third is the existence of no
tool to analyze and simulate SCCS-VP programs. That is
why SCCS-VP programs have to be translated to a basic
SCCS before CWB can simulate it.

Another example of the use of CCS (Calculus of
Communicating System) is the work by Krishnan [8]. He
discussed the possibilities and limitations of using CCS

Mapping Analysis and
Verification models

SART models
(ICASE tool)

FIGURE 1: The process of mapping
SART models to CPN models.



for the purpose of software system analysis. He showed
how a formal description can be generated from existing
informal documents. The disadvantage, as he pointed out,
was that only small, restricted sub-systems can be
analyzed using this approach.

VDM

Fraser and Kumar [12] presented VDM [24] based formal
models of software systems which can be generated from
informal specifications. Informal specifications are
expressed in SART. Two methods are discussed in the
paper. The first is a cognitive approach which initially uses
SART specifications as an aid to human understanding and
cognition. This understanding helps the requirements
engineer to develop top-level specifications of the systems
using the formal VDM specifications language. The
second approach is automatic generation of VDM
specifications from SART models. Some of the problems
with this approach are:

•   Discrete signals get mapped to continuous
variables

•   No mechanism to add timing information
•   Uses flattened DFD (Data Flow Diagram) sets

Assuming a VDM based model is available, a process of
translating VDM specification into ABC1 programs is
described by Kans et al. [13]. Miranda or Prolog have
often been used to prototype the specifications written in
the formal notation of VDM. The problem with Miranda
and Prolog is that they do not have destructive assignment
commands [13]. That makes it difficult to model VDM
state changes. Imperative languages like C and Pascal
allow state changes to be modelled naturally but lack the
expressive power to make prototyping feasible. Kans and
Hayton then suggest that ABC should be used for
prototyping as it is a simple (yet very powerful)
imperative language having expressive power suitable for
prototyping.

Approaches used by Mair, Kung, Wieringa and
Miriyala

Maier has proposed a technique to link existing methods
including real-time structured analysis and design,
metrics, performance modeling and quality function

1. ABC is a programming language that has been designed
and implemented at CWI, the Center for Mathematics
and Computer Science, in Amsterdam. It is an impera-
tive language designed originally as a replacement of
BASIC. Kans et al., provide the mapping of VDM sets
to ABC lists.

deployment [1]. This technique combines four major
views for complex system development:

•   functional
•   physical
•   performance and
•   management.

An earlier example of modeling software systems is
presented in a paper by Kung [21]. This is a graphical
approach which can model both static and dynamic
aspects of the application in one model. Kung’s method
provides executable specifications which were translated
to a Prolog program to simulate the behavior of the
system. This approach combines various modeling
techniques such as Entity-Relationship Diagrams, Data
flow diagram, Petrinets, Prolog and Relational Calculus.
Given the variety of modeling techniques used, it is a
complicated approach [12].

Wieringa [5] discusses a concept called Transaction
Decomposition Table (TDT). TDT allows the analyst to
represent the connection between the static and dynamic
system structure.

An approach based on larch shared language is discussed
by Miriyala et al. [14]. It is used in a tool called
SPECIFIER. The technique uses problem-solving
methods such as Schemas, Analogy and Difference-Based
Reasoning.

HLTPNs

In [17] and [22] Pezze, Elmstrom, and Lintulampi
presented semantics mapping rules to generate HLTPN
models from the Ward and Mellor SART notations. The
Ward and Mellor SART notations were later modified by
Hatley and Pirbhai, and is currently supported by most
ICASE tools. The approach in their work is to generate
Petrinets which are not to be visible to the analyst. Their
objective is to formalize the SART notation and produce
an environment supporting the execution of heterogeneous
models where parts of the model are implemented in C
code. The drawback of this approach is the complexity of
the HLTPN models obtained. The mapping rules used in
this approach, produce a much more complicated HLTPN
model from a relatively simple SART model. While
HLTPN models have been proposed to integrate the
functional and time aspects in a semantically precise way,
we believe Design/CPN adopts a simple time model added
to the color Petri nets formalism. HLTPN have been
proposed to model the detailed real-time properties of
systems, and hence they are more suitable to be used at the
detailed design or code level rather than at the
requirements analysis level.



3  The Method Presented in This Paper

The focus of our approach is to generate scalable CPN
models from the Hatley and Pirbhai SART notations
which can be used, refined, and parametrized (for dynamic
analysis by the analyst). These models start at a
comparable level of abstraction and complexity as the
original SART models (with an almost one-to-one
mapping of SART objects to CPN objects) and hence they
can also be scaled to model large PDS components. The
CPN models can be used for reachability and deadlock
analysis, performance analysis, performability analysis,
reliability analysis, and in general can be used to verify the
information system properties as reported in a number of
publications [6], [7], [10], [9], [16], [17], [18], [19], [22].
Some of the verifiable properties using Petrinets [10] are:

•   derivability and consistent definition of outputs
•   performability of processes
•   application dependent properties of a concurrent

system

In the following section, integration levels among
development and verification tools are described.

4  Layers of Tool Integration

Integration of tools can be designed at five levels [29]:

•   Carrier Level: Tool integration is accomplished by
passing byte streams.

•   Lexical Level: At this level tools share data formats
and operating conventions that make them interact
meaningfully.

•   Syntactic Level: The tools agree on a set of data
structures and on the rules governing their
formation.

•   Semantic Level: The tools agree on the structure’s
semantics which provide enough information to
automate development and analysis tasks.

•   Method Level: At this level the tools agree on
specific process step (e.g. steps of development
process such as prototyping, requirements analysis
and dynamic modeling).

The approach in this paper is based on the Semantics level
and the Method level of tool integration. In the Semantic
level of integration, tools agree on the data-structure
definitions, as well as the meanings of operations on those
structures. At this level there is enough information
available to automate development, analysis and design
tasks (e.g. code generation tools). This level of agreement

between the tools can be achieved by the following
methods.

•   Hard coding the definition of the data structure and
operation specifications into the tools, or

•   Including information about the data structures and
operations that make up the infrastructure's data
repository in the repository itself. Tools can then
query such meta-data.

A common definition of the structures' semantics
augments the syntactic level information. Most of the
integrated tool suites use the first method (hard coding).
As the specifications are defined before the tools are
written, tool writers know what structures are available,
how they are named, the meaning of each structure, and
the effect of each operation. A data transfer model based
on semantic level integration is described in the following
section.

5  The Data Transfer Model

The Data Transfer Model is built on the standards for tool
integration and framework for tool-to-tool data transfer.
These issues are discussed in the following paragraphs.

5.1 Standards for Tool Integration

There are four standards for tool integration discussed in
this section: Semantics Transfer Language, Case Data
Interchange Format, Information Resource Dictionary
System and Portable Common Tool Environment.

Semantic Transfer Language (STL)

IEEE tool integration standard 1175 or Semantic Transfer
Language (STL) has been proposed. This is for non-
graphical communications among CASE tools. STL can
represent a set of CASE tool information with text and
generalized graphical information. It attempts to add more
semantics in the information to be exchanged by different
tools. It is used as an intermediary language to express a
powerful set of tool-generated information among
different tools in a conceptualized non-graphical form.

Case Data Interchange Format (CDIF)

CDIF is defined by the Electronic Industries Association
as a standard for CASE tool and repository
communication. The salient features of this standard are:

•   This is used for exchanging information among
CASE tools and repositories.

•   It includes descriptions, placement and details of
text and graphical elements.

•   This syntactic/semantics level integration is
supported by most CASE tool vendors.



6  Semantics mapping rules

The STU uses a set of mapping rules for translating SART
objects to the CPN objects. A brief overview of the SART
and the CPN environment is given in  Section 6.1. In
Section 6.2, the semantics mapping rules for translating a
SART model to a CPN model are briefly described.

6.1 Description of the SART and the CPN
Environments

The following paragraphs describe the SART and the CPN
environments.

SART Environment

The SART model components are shown in Figure 3: Data
Flow Diagrams (DFD)1, Control Specifications (C-Spec),
Process Specifications (P-Spec) and Data Dictionary
Entries (DDE). The DFD at the highest level of abstraction
is known as the Context Diagram. This diagram allows
three types of objects: a bubble, terminators, data and
control flows. The single bubble represents the whole
system. Terminators represent the external entities which
send or receive data or control signals from the system.
The data and control flows connect the terminators and the
bubble.

The bubble on the context diagram is decomposed into
more bubbles or processes on DFD 0. Each of these

1. Control Flow Diagrams are merged with DFDs

CASE Tool IV&V Tool

Design/Analysis

Access Facility

Standard CASE Data

Design/Analysis
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Verification  Tool Data Objects
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FIGURE 2: General framework for Tool-to-
Tool Integration.

Objects (CDIF Objects)

 (Teamwork/SART)  (Design/CPN)

CDIF is also a model of how systems should be built [30].
The basis of CDIF is agreed-on syntactic definitions that
let tools exchange the data [29].

I nformation Resource Dictionary System (IRDS)

An example of a syntactic level integration standard is the
IRDS. This is an Entity-Relationship based model that
describes the way information is logically stored in the
repositories and the methods to be used by tools to access
the information. It is a data-base schema which is good for
tightly-coupled integration architectures. IRDS defines
what should be contained in a repository but leaves its
technical design and implementation methods undefined.

Portable Common Tool Environment (PCTE)

PCTE provides a broad and complex set of interface calls
(similar to operating-system calls) to underlying facilities
that support CASE tools. But it has no explicit functions to
support software engineering [29]. It permits the use of
CASE tools across operating systems and local area
networks. PCTE was developed under the European
Strategic Program for Research in Information
Technology (ESPRIT). It is supported by several
European vendors. It includes a common object oriented
layer for transparent information exchange between
different types of tools [30]. It is primarily used for C,
C++ and Ada environments.

5.2 A Framework for Tool-to-Tool Data Transfer

A framework for tool-to-tool data transfer is shown in
Figure 2. This is a general case showing the transfer of
data from a CASE tool to a verification tool. The analysis
and design data is normally available from the CASE tool
database. Most CASE tools provide an access utility to
allow others tools to retrieve this data.

Software Bus Facility (SBF) acts as a communication
channel between different tools in an integrated
environment. Once a data package is available via the
SBF, any tool (including the verification tools) can receive
this data through a local gateway. Once the local gateway
completes the process of receiving data, the Semantics
Transfer Utility (STU) converts the input data semantics to
data objects of the verification tool. This general
framework for tool-to-tool integration is implemented
using Teamwork and Design/CPN.



bubbles will be numbered as 1, 2, etc. The analyst
determines if any of these processes are primitive.

For a primitive process, a P-Spec is defined. If a process is
not primitive, a lower level DFD is used to define it
further. For example, in Figure 3, two processes in DFD 0
are defined by the lower level DFD 1 and DFD 2. These
steps are repeated until the analyst reaches the primitive
level for every process in the model. Definitions for data
flows, control flows and stores constitute the data
dictionary for a given model. The fields of the data
dictionary corresponding to individual flows or stores are
called DDE.

Also, a data flow diagram may contain a C-Spec. C-Specs
are used to define process activation or handling control
flows. A vertical bar on the DFD represents a C-Spec. The
C-Spec is further defined on a separate sheet in the SART
model. Several representations are in use for defining C-
Specs. Some of the examples are State Transition
Diagram, Process Activation Table and Decision Table. In
this work, only State Transition Diagrams are considered.

CPN Environment

The CPN modeling environment is also hierarchical. A
CPN model is arranged in the form of pages as shown in
Figure 4. Each page in this case has an associated SART
object which is shown just outside the CPN-Page’s oval
representation. The CPN-PAGE-1 is mapped from the
Context Diagram. Similarly CPN-PAGE-2 is mapped
from the DFD 0. Other DFD levels are mapped to
corresponding CPN pages as shown in the Figure 4.

The oval for Declaration page is not connected in the
hierarchy diagram. The reason is that it does not contain a
CPN. The definitions of the colors and declaration of CPN
variables of different colors are specified in a declaration
page. The entries in the declaration page are derived from
the DDEs of the SART model.

DDE C-Spec

DFD-0

DFD-2
P-Spec

DFD-1

Context Diagram

FIGURE 3: Components of SART and their
relationship with each other.

Every CPN page contains a colored petrinet. A colored
petrinet is a petrinet in which different places can have
different types of tokens (colors). CPN uses data types,
data objects and variables. CPN data types are called
colorsets and CPN data objects are called tokens. A CPN
consists of the following elements:

•   Places (represented by circles): locations for
holding data

•   Transitions (represented by rectangles): activities
that transform data

•   Arcs (represented by arrows): connect places with
transitions. Arrowhead specifies token flow. Input
arcs bring tokens to the transitions and output arcs
show the paths leaving a transition.

•   Arc inscriptions: Input arc inscriptions specify the
data that must exist for an activity to occur, and
output arc inscriptions specify the data that will be
deposited if an activity occurs. Time stamps on the
arc inscriptions represent the delay in the flow of
tokens.

•   Guards (attribute of transition): define conditions
that must be true for an activity to occur. Guards
can contain time stamps.

•   Code segments (attribute of transition): contain
code to implement exact transformation from input
tokens to output tokens. The code in these
segments is written using CPN Meta Language.

As shown in Figure 4, CPN-PAGE-1 is a superpage for the
rest of pages named CPN-PAGE-* (where * is an integer 2
through 5). Inversely CPN-PAGE-2 is a subpage for CPN-
PAGE-1.

At any given time, the distribution of tokens on places
defines the current state of the modeled system.
Transitions are connected to a set of input as well as a set
of output places. A change in the system state occurs when
a transition fires. The firing of a transition constitutes the

Context-Diagram

DFD0

DFD-1

Declaration page

DFD-2

CPN-PAGE-1

CPN-PAGE-2

CPN-PAGE-3

CPN-PAGE-4

FIGURE 4: CPN page showing model hierarchy

CPN-PAGE-5

C-Spec



removal of tokens from input places and depositing tokens
in the output places. Each of these objects (i.e. places, arcs
and transitions) have their own sets of attributes. Objects
other than the ones just discussed, which may exist on a
CPN pages are text blocks and local declaration pages.
These are not discussed here for the sake of brevity.
Mapping of individual CPN pages from the corresponding
DFDs is explained in the following section.

6.2 Mapping SART Objects to CPN Objects

An SART model, as defined in Case Data Interchange
Format, is expressed as N-tuple. In this paper only 4-tuple
variant of CDIF representation are considered.

•   Obj_dfd: A data flow diagram object.
•   Obj_dd: Represents the collection of Data

Dictionary Entries (DDE). The DDEs hold
information on data flows, control flows and data
stores.

•   obj_std: Used for State Transition Diagram.
•   obj_ps: Object containing P-Spec.

The hierarchy definitions are embedded in the individual
objects like data flow diagrams, state transition diagrams,
data dictionary entries and P-Specs. The mapping
procedure presented here uses this description to maintain
the hierarchy in the resulting CPN model structure. This
procedure was implemented using flex and bison along
with mapping rules written in the C-language.

The hierarchical colored petri nets (HCPN) are defined as
a tuple:

•   S: a finite set of pages such that each page s∈ S is a
non-hierarchical CPN=(∑ s, Ps, Ts, As, Ns, Cs, Gs,
Es, Is), Where:

∑: finite set of non-empty types (or color
sets)

P: finite set of places

T: finite set of transitions

A: finite set of arcs

N: node function

C: Color function (P into∑)

G: guard function. It is defined from T into
expressions.

E: arc expression function. It is defined from
A into expressions.

I: initialization function. It is defined from P
into closed expressions.

Note: Further details are available from the
reference [25].

•   SN⊆ T : a set of substitution nodes
•   SA : a page assignment function. It is defined from

SN into S such that no page is a subpage of itself.
•   PN⊆ P: a set of port nodes
•   PT is port type function. It is defined from PN into

{in, out, in/out, general}
•   PA: port assignment function. It is defined from SN

into binary relations as:

1. Socket nodes are related to port nodes.

2. Socket nodes are of the correct type.

3. Related nodes have identical color sets and
equivalent initialization expression.

•   FS⊆ Ps is finite set of fusion sets such that
members of a fusion set have identical color sets
and equivalent initialization expressions.

•   FT is fusion type functions. It is defined from
fusion sets into {global, page, instance}.

•   PP⊆ SMS is a multiset of prime pages

The SART objects are mapped to HCPN using the rules
given in the following paragraph.

Mapping the SART model to a HCPN model

Rule: ∀ obj_dfd→ non-hierarchical CPN page

Rule: ∀ obj_std→ non-hierarchical CPN page

Rule: ∀ obj_dd→ CPN declaration page

The obj_ps (the process specifications) is not mapped
automatically using a semantic transfer utility, rather the
analyst converts the process specifications to a code
suitable for the CPN. This code can be used in the CPN
related functions and the transition code segments.

Mapping the Data Flow Diagram to CPN page

A data flow diagram is a six tuple DFD = (dfd_buble,
dfd_store, dfd_term, dfd_tb, dfd_csc, dfd_flow). Each of
these objects are further defined in the CDIF standard.

Each CPN page is tuple object (∑, T, P, G, A). These
objects are mapped from the data flow diagram object as
given below:

Rule:∀ dfd_buble→ t such that t∈ T, and dfd_buble is
a primitive one.

Rule: ∀ non-primitive dfd_bubble, dfd_buble→ SN.
Such that the input and output flows of this dfd_buble are
mapped to the sockets. The inputs and output flows get
mapped to ports in the subpage. In the same step, based on
the flow directions on the DFD, PT is also defined from
the set of its values {in, out, in/out, general}.



As shown in Figure 5, a primitive dfd_buble
“Validate_Command” (Figure 5-a) is mapped to transition
with the same name (Figure 5-b). The input data flows
called PDB, Operator_Command_1 and
Operator_Command_2 are mapped to the places with the
same name. The direction of arcs in Figure 5-b is also
mapped from the corresponding direction of data_flows
shown in Figure 5-a. The same thing is true for the outputs
of the process “Validate_Command”. As shown in Figure
5-b, the output places spacecraft_ realtime_ command and
PDB are ports. In other words, these places are connected
to the corresponding sockets on a superpage. The place
spcecraft_realtime_command is an output port. Whereas
the place PDB is an input port.

Mapping the Data Dictionary Entries

The data dictionary entries are mapped to corresponding
color entries in the global declaration page. In SART the
data dictionary element is a three tuple (dde_name,
dde_attr_list, edif_body). During the mapping process a
dde_name is used for adding a particular color. The
objects dde_attr_list (the attribute list for a DDE) and
edif_body are used to generate multisets corresponding to
a color set in the CPN environment. Table 1 shows some
rules for the DDE mapping process.

Mapping the Control Specifications

The C-Spec in a DFD appears as a substitution transition
on the corresponding CPN page. A subpage for this
substitution transition represents the mapping of its C-

Table 1: Mapping rules for generating the Global Page of the CPN
model.

DDE definition CPN translation Remarks

Activity_Violation_Detec
ted
= [“TRUE” | “FALSE”]

color Activity_Viola-
tion_Detected
= with  TRUE | FALSE;

complete
definition

ADCs-Data2
= Information_Dialog
 + Dialog
 + Algorithms
 + Ancillary_Data
 + Data_Products
 + Data_Information

color ADCs-Data2
= record Information_-
Dialog
 * Dialog
 *Algorithms
 *Ancillary_Data
 * Data_Products
 * Data_Information;

complete
definition

Alarms_Notification =
*not-defined*

color Alarms_Notifica-
tion = with
Alarms_Notification;

Default
color

When the definition of
Alert_signal is not found
in the DDE table

color Alert_Signal =with
Alert_Signal

Default
color

Rule:∀ dfd_store→ f(T,P,G,A)

A dfd_store can be read-only or read-write. The
f(T,P,G,A) represents this accordingly.

Rule:∀ dfd_term→ P

Rule:∀ dfd_csc→ CPN page

Rule:∀ dfd_flow→ P

This is just an overview of the mapping rules used for the
translation of a data flow diagram.

(a)

(b)
FIGURE 5: (a) SART representation of
“Validate_Command”, (b) The CPN representation of
“Validate_Command”.



Spec. A state transition diagram is the tuple (std_state,
std_tb, std_trans):

•   std_state: is the object representing state in the
STD

•   std_tb: is used to give a definition to an STD as
mealy or moore.

•   std_trans: represents the transition object.

The mapping rules used are:

Rule:∀std_state→ P

Rule:∀std_trans→ T

Rule:∀std_tb→ f(G,C,P) where both guard (G) as well
as code segments (C) are derived from the conditions
needed for the change in the system state. The places (P)
correspond to the input and output signals.

A cruise control example is presented in Figure 6 to
illustrate the mapping process for State Transition
Diagrams.

The transitions are marked as T-1 through T-6 for a
comparison with transitions in the CPN page shown in
Figure 7. The places are named according to the mapping
rules given earlier. Two places named as
Enable_Select_Speed and Enable_Maintain_Speed are
used for enabling/disabling the processes, Select_Speed
and Maintain_Speed, respectively. The presence or
absence of a token in these places, is used to enable or
disable the corresponding process.

Different shades are used to distinguish between places in
Figure 7. The places shaded black are the enabling,
disabling places. The larger size places shaded grey are the

1

2 3

Cruising

Accelerating Idle
Braking

Top Gear = OFF

STOP ACCEL/
"select Speed";
"Maintain Speed"

START ACCEL

  /
  "select Speed"; "Maintain Speed"

RESUME | Actiavate/
"Maintain Speed"

BRAKING

TOP GEAR = OFF

T-1

T-2

T-3

T-4

T-5

T-5

T-3

T-6

FIGURE 6: Cruise Control STD.

.1

.1

.2

.2

states of the controller. The places with light grey shade
are input signals to the controller. There are always tokens
present in the input places. For example, the place Braking
has a token with a value TRUE if the brakes are on,
otherwise it is false. Guards for the transitions are shown
in a separate labeled box to reduce diagram clutter.

Note: Arc inscriptions and intermediate place names in
Figure 7 are hidden from the view for the sake of clarity.

Once the output file is generated based on these rules, the
analyst checks for consistency and completeness. The
important aspect related to the enable and disable function
of an STD is based on the Hatley and Pirbhai notation.
Actions (enabling and disabling) are associated with
transitions which are transient in nature. The actions are
assumed to continue in effect until the next transition
occurs. This means a process activated by a particular
action remains activated continuously and continues to
respond to changing data inputs until the next transition
occurs [26]. The approach used in this paper is slightly
different. The enabling places get one token in the state

Start

Start_Accel

Idle

Accelerating

Cruising

Braking

Top_Gear

Resume

Stop_Accel

T-1

T-4

[braking=ON orelse 
 Top_Gear = OFF](*guard for T-3*)

T-3

T-2

[start_accel = TRUE] (*for T-2*)

Enable_Select_Speed

Enable_Maintain_Speed

T-6

[stop_accel = TRUE] (*for T-6*)

Activate

T-5

[braking=ON orelse 
 Top_Gear = OFF](*guard for T-5*)

(GAURD REGIONS)

FIGURE 7: CPN diagram for Cruise Control



where a process is to be enabled. Once the token is
consumed by the enabled process, there is no more
enabling token until the system goes back to the same
state. The Hatley Pirbhai approach can be incorporated
through slight modifications to our mapping rules.

7  Verification and Analysis Tasks

The methodology described in the previous section can be
used to develop dynamic models on which several
verification and analysis tasks such as performance
analysis and risk assessment can be conducted. A detailed
discussion on these tasks is available in the technical
report [15]. In this section we briefly describe two analysis
techniques conducted using CPN models.

7.1 Performance and Reliability Analysis

The CPN model captures both the static and the dynamic
behavior of the specification. In the early design stages the
functional modules are relatively large and the knowledge
of their execution behavior may be imprecise. As the
design progresses and the modules are further resolved,
the estimates of their behavior and execution resource
characterization become more precise. A CPN model
helps in giving the definition and subsequently show
dynamic behavior of different components.

System execution scenarios providing the definitions of
the external inputs to the model were developed for each
simulation run. These simulations were used to verify the
dynamic behavior of the original SART specifications.
Simulations of the system were also conducted to analyze
the performance and performability requirements. The
detail about scenarios and the simulation results will be
presented in a separate paper.

7.2 Criticality Assessment

For the assessment of criticality, system requirements are
classified to determine their relative importance in terms
of such factors as performance, mission, safety,
complexity, and cost risk. The measure of criticality
assessment can be termed as Criticality Factor (CF) [23].
Once the process of assessment is complete, IV&V
resources can be concentrated where they are most
needed. This also helps while developing test plans to
slant the testing toward the more critical requirements.
Criticality is based on risk and complexity.

Risks are evaluated by determining the adequacy of the
automation decisions and of the software/hardware
interfaces on the requirements level. Secondly the risks are
evaluated by judgmental evaluation of the type and degree
of potential for described categories of failure
contingencies. The failure mode effects analysis (FMEA)

approach becomes necessary to provide additional depth
to the quantification [27]. Analysis of the effects that
failures, due to software errors, can have on the system
often requires an in-depth study using detailed models of
the specifications as presented in this paper. Thus, FMEA
and criticality assessments work together to provide a way
to best utilize the available V&V resources.

Complexity is related to the cumulative nature of
implementing multi-disciplinary software requirements.
Complex systems contain interfaces with many
subsystems at the same time. Therefore it is necessary to
measure the degree to which a given software requirement
may impact the baseline system performance requirements
if problems occur during program executions.   This
measure reflects the concept that criticality is directly
proportional to the number of connectivities to different
subsystems, and that certain subsystem disciplines
potentially affect the system performance more than do
other disciplines. Complexity analysis can be carried out
on a functional basis using the models presented in the
previous section to determine the criticality factors of
these functions.

8  Conclusions

This paper presented a methodology for generating formal
specification models based on CPN. The models are
generated from specifications developed in SART. One of
the important characteristic of this methodology is
scalability. It is adaptable to large scale systems. This can
be achieved by mapping the specifications of the model
components using a bottom-up approach.

One of the lessons learned in this work is the amount of
effort needed to design and implement the semantics
mapping utility. The process of mapping a large model
also requires the support of a specialized tool to extract the
components of a large model from one environment and
assemble them in the target environment. This tool is
currently being developed as part of an on-going research
project at West Virginia University.

The SART specifications used in this paper have been
used in many industrial projects and have become a
standard notations supported by most CASE tools. In
contrast, a large number of notations and techniques for
object oriented specifications has been proposed in the
literature. Further work is needed to generalize the
methodology presented in this paper to use meta-modeling
concepts and techniques [31] to accommodate
specifications based on the various notations of object
oriented models.
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